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Abstract

A new semiclassical approach to molecular collision dynamics is
developed. In this approach the state of a sysﬁeﬁ i; désériﬂed”by ;
unit vector in Hilbert space, By choosing a réference unit vector and
a continuous mapping a correspondence between the vector in Hilbert
space and the point in a label space is establishgd, i.e,, the vector
in Hilbert space is paraméterized or labeled by complex variables. It
is shown that the label variables formally obey classical mechanics.
Thus, the time evolution of the vectors in Hilbert space, i.e., the
evolution of the states of the system, can be determined by calculating
the evolution of the label variables classically. To illustrate this
idea, the formalism for calculating the vibrational tranéition
probability in the collinear collision A + BC is presented, and a
demonstrative calculation for the collinear Secrest-Johnson model of He + H
vibrationally inelastic scattering has been carried dut. The comparison
with the exact quantum results shows that the agreement is encouragingly

good.
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I. Introduction.

In quantum mechanics the state of a system corresponds to a unit
vector in Hilbert space. The dynamics ié governed by tﬁe Schradinger
equation which, in practicai calculation, often leads to a prohibitively
large number of coupled differential equations. In recent years many
‘dynamical calculations have utilized classiéal and semiclassical
methods. In‘classical mechanics the state of a system is specified
by the coordinates and momenta of the particles in the system which
evolve acco:ding to Hamilton's equations, which are easy to deal with,
but classical mechanics is of course only an approximation to molecular
dynamics. Semiclassical methods--e.g., multidimensional WKB methods
like classical S-matri}é.theory,1 and timéfdependent wave—pécket methodsz—v
are thus appealing since they combine‘the computational simplicity of
classical mechanics with an approximate description of quantum effects.

In a series of papers on continuous representation theory by
Klauder3 an interesting semiclassical idea is presented. One begins
with establishing a correspondence between vectors |¢> in Hilbert space
H and sets of labels % in an abstract label variable space L by .a mapping
M(%): Le L~ |®[%]> € i . It has been sﬁown3 that within certain
restriction the label variables formally follow the laws of classical
mechanics, so that the evolution of the vector in Hilbert space, i.e.,
the state of the syétem as é function of the time, can be determined by
calculating the time development of the label variables classicall&.

In this paper we apply these ideas to the problem of molecular scattering
and develop the formalism for calculating the transition probability of
—_—

inelastic scattering as an alternative semiclassical approach to molecular

dynamics.



Iﬁ Section II, we demonstrate the basic idea of this approach
by considering an eiementary example of a single nonrelativistic
particle free to move in only one dimension. The formalism for
calculating the'transition probability of vibrationally inelastic
scattering in the case of A + BC collinear collision is derived in
'~ Section IiI, and an illustratiﬁe calculation for the Secrest-Johnson
model system of He + H2 collinear collision is‘presented in Section
IV. As will be seen, the presented methodology, at least within
the mode that it is applied here, has some features in common with
earlier semiclassical wave packet approaches, but there are significant

differences; Section V concludes with a discussion of this comparison,



I1. Classical Mechanics of Label Variables--The Basic Idea.

The basic problem in quantum dynamics is to determine the
evolution of the state vector in a Hilbert space. To this end, the
present approach first establishés a correspondence between the
state vector in the Hilbert space and label variables in a i;Bel'
space, and these label variables are found formally to obey the
classical Hamilton equations o6f motion. One can then determine
the time development of the state vector by solving classical equations
of motion for the label variables by means of standard classical
trajectory techniques. It is illustrative to consider first the
case of a single, nonrelativistic particle free moving in only one
dimension. Most of this section closely follows Klauder's3 presentation,

First one chooses a unit vector [¢O> in the Hilbert space ¥ of

the system as a reference vector, Thus,

<<I>O|<I>0> = 1 . (1)

In principle the reference vector |®0> can be any proper vector in
the Hilbert space. A pair of self-adjoint operators acting in the
Hilbert space are denoted by avand ﬁ; for example, a and P might be
the.position and momentum operator, respéctively. These operators

obey the canonical commutation relation
{Q,p] = ih . (2)

Using these operators one can generate a two-parameter, unitary

family of operators

G[p,q] e—iqP/h ein/h v (3)



that satisfy the composition law

~

*pa /. Ulptp',q+q'] y (4)

Ulp,ql Ulp',q'] = e
as well as the basic relation

e-po/h e1pP/h

U p,q) = Ut Ip,ql

e1Pd G[-p,-ql o (5)

Here p and q denote two arbitrary complex parameters. By acting

on the reference vector IQ > with the unitary operator U[p,q] one

0

defines the unit vector
|olp,ql> = Ulp,alle> (6)

which is labeled by p and q. It can be shown4 that the set of these
vectors |®[p,q]> for all p and q form a continuous basis G of the
Hilbert space X in the sense that we can resolve the identity operator

as

I =f|<np,q1> 9 <olp,all (7

therefore, an arbitrary vector lw> € X can be expressed in terms of

the set of these vectors

[y> =/|¢[p,q]> %ﬂw(p,q) , (8)



where Y(p,q) = <®[p,q]|w> is a representation of the vector Iw> in
this continuous basis G. Now if one imposes on the reference

' vector [¢O> the restrictions

|
o

<¢0|P|¢0> = (9a)

and

[
o

<¢O|Q|¢o> (9b)

~ ~

i.e., the mean values of P and Q in the reference state are zero,

then it is easy to show that

(10a)

]
e

<¢[p,ql|P|®lp,q}>
and

<¢(p,q]|Q|élp,q]> = (10b)

|
Nal

This means that for such a choice of the reference vector the label
variables p and q acquire a physical éignificance, i.,e., p and q

~ A
now are the mean values of the operator P and Q in state |®[p,qa]>,

respectively. Equations (9) and (10) immediately lead to the following

canonical kinematical form

. -1 h_ e o° i A
ih<®[p,q]|®(p,q]> = <d[p,ql|e l?P/l[qP‘pQ]epo/h|¢o>

<0yl [a(P+p) - palle,>

=pq | (11)



where the dot denotes the time derivative.
Consider now the equation of motion for evolution of the label
variables p and q. As well known in quantum mechanics5 the time

evolution of a state obeys the Schrddinger equation

> la)
T LA I (12)
dt
where H is the Hamiltonian of the system, The solution of this
equation can be formally written as

ElHt /h

lw(e)> = lwoy> (13)

if H does not depend on time t explicitly. The Schtadinger'equation

can be deduced from the extremization of the quantum action functional

I =/.[<‘lp,ihi)>—<w|;{|\p>]dt | (14)

under unrestricted variation of the vector |Y(t)>. The unrestricted
variation means that the vector |Y(t)> can be any vector in the whole
Hilbert space ¥. Among all the vectors in Hilbert space only the
vector which causes the action functional I to have an extreme value
will correspond to a real state of the system. Suppose now the
variation of the vector |¢> is limited to a fairly restricted set of
unit vectors such as the basis set vectors |®[p,q]> just defined.

In other words, one uses |¢[p,q]> instead of |y> in the exﬁréssion
of the action functional in Eq. (14), and with the help of Eq. (11)

one obtains



I =,j(;t {ih<0[p,q)|d[p,q]> - <¢[p,q]|§|¢[p,q]>}

=fdc (pq - H) | (15)

with
H = <¢[p,q]|H|®[p,q]> . (16)

One immediately recognizes that formally this is a classical action
functional. The extremal variation of I' with respect to arbitrary
variation of p and q yields the classical Hamilton's equations of

motion

(17a)

]
o

q = 9H/9p

i
o

+ 3H/3q (17b)

J o

There are two reasons why we have used the word '"formally" here.
First, H(p,q) is not equal to the classical Hamiltonian Hcl(p,q)
which has the functional form of the quantum mechanical Hamiltonian

with explicit p and q substitution for the operators P and Q,

respectively. There is an additional term O(ﬁ,éo,p,q)3,

<¢[p,qllH]elp,q]>

H(p,q)

= <0, |H(P+p,0r) |0

Hcl(p,q) + 0(h,® ,p,q) . (18)

0



For nonpathological Hamiltonians 0 depends only on the positive powers.

of h. Hence, in this case

2im o(h,d yP,q) = 0 .

h<o 0
That is, in the classiéal limit h»0, one has H(p,q) = Hcl(p,Q) so
that Eq. (17) becomes the conventional classical equation of motion.
Since classical mechanics arises only in the formal sense, one can
just as well adopt H(p,q) itself as the '"classical" Hamiltonian.
Second, in classical mechanics p and q refer to ﬁhe momentum and
coordinate of a particle. Here, however, p and q just represent
label variables for tﬁe state vector @[p,q]. Tﬁe physical sigﬁificance
of p and q depends on the choice of the reference vecﬁor |®0> and
tﬁe unitary operator ﬁ[p,q].

This essentially finisheé the general description of the approach.

The practical scheme is as follows: Suppose that the system initially
is in a state [#(0)>= [6[p(0),q(0)]>, i.e., the initial values p(0) and
q(0) of p and q are known. Then, integréting the equation of motion
Eq. (17) for p and q one obtains the values of p and q at time t,
i.e., p(t) and q(t). Hence, the state of the system at time t can

be determined as
|o(e) = |o[p(t),q(e)]> . (19)

In general if the system initially in a state which is not in the

basis set G, then we can expand it in terms of the basis set states
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: dp.dq :
|¥(0)> =fl<1>[po,qo]> —o <@lpg,a,] [¥(0)> (20)

and at later time t we have

dpodqo
lu(e)> = [lelpy(£) a0 () 1> —5= <@llpg.qglw(@)> , (21)

where |®fp0(t),q0(t)]>can be evaluated by using the procedure just
described above.
The crucial thing we have done during the derivation is the
restricted variation. That is, we limited ourselves to considering
only the vectors within the basis set G. It implies th#t we have
" assumed that if initially the system is in the state [®(0)> = |®[p(0),q(0)1>
belonging to the basis set G, then later on the state vector |o(t)>
for the system would be within the basis set G all the time and never

goes beyond the basis set G. Mathematically it meamns if

[9(0)> = |#{p(0),q(0)PE G for t = 0

then

lo(e)> = e TH/M 1500)> = o[p(t),q(e)]> € G (22)

for all t. In general, this is not true. It is only an approximation.
The validity of this approximation depends on the choice of the
reference vector |¢O> and on the Hamiltonian operator ﬁ. For

example, if the Hamiltonian is linear or quadratic in § and a,

it would be exact.
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It is straightforward to generalize the above formalism to a system
of N degrees of freedom. All that is needed is to replace the scalar
label variables with vector label variables

q>q . (23a)
P*p (23b)

scalar operators with the vector operators

(24a)

Vo)
¥
O >

2~
+
1

~ (24b)

qP + q°P (25a)

PQ * p'§ : (25b)

Here q and p denote the sets of labels {qi} and {pi}, i=1,2,...,N, g and

P signify the sets of the operators {ai} and {ﬁi}, i=1,2,...,N

which satisfy the commutation relation

~ ~

[Qi’Pi] = lh'SlJ, [Ql’QJ] =0, [Pi’Pj] =0 ’ (26)

where Gij is the Kronecker delta function.
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III. Application to the Collinear Inelastic Scattering of A + BC.

To illustrate the application of the general results obtained
above, it is useful to consider the simplest nontrivial example of
a collision system that possesses an internal degree of freedom in
addition to translation. The Hamiltonian of the system is

A A A A A e A A A AN AN A A

H(P,R,p,r) = HO(P,R,p,r) + V(r,R)

52 ;2 ~ o~
ol + 5=+ v(r) + V(r,R) (27a)
with
5 o(BsRop,1T) = u g + v(r) , _ (27h)

where ; and ; are the Cartesian coordinate and momentum for translation
of A relative to the center of mass of BC, and ; and ; are the Cartesian
variables for the vibration of BC.

One must first choose the reference vector. It is
obvious that one shouid take the initial state as the reference state
if it is possible, since it corresponds to the zero initial value
of label variables and there would be no ambiguity in deciding
the initial condition. However, as a reference state it musﬁ be a
proper vector, and things will be much easier if the expectation
values of ; and 5 are zero as required by Eq. (9). In the present
case, the initial vibrational state corresponds to a proper vector

in Hilbert space and can be chosen as a reference vector for the

vibrational motion. lowever, in. general it does not fulfill the

conditions of Eq. (9)
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# O (28a)

i
b=l

n, [pln>

I
[all}

<n,lr|n,> (0 . (28b)

But if the new pair of self-adjoint operators p' and r'

p'=p - 5 , ' =1 - T (29)

are used as the generator of unitary mapping, one will have

~

[;',p'] = ih (29")

and
<ni|;'|ni> =0 (30)
<ni|;'|ni> =0 |, (30")

In Contrast, the initial momemtum eigenstate for translation is not
a localized state, i.e., 1s not a proper vector, so it cannot be
chosen as a reference vector. Instead a Gaussian wave paéket state
|¢ot> is chosen, which has the representation in position
representation,

1 2

R
<R[® > = ——=7 exp(- — (31a)
ot (n£)1/4 2£;2

and in momentum representation
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2 L
<elo_ > = ‘E? E;;%7Z-exp(— iif Yy , (31

where subscript t refers to translational motion, and £ is a

parameter chéracterizing the width of the wave packet. |®ot>
satisfys the condition of Eq. (9)
< ] > =
¢°t|P|¢ot 0 (32a)
and
A
<d |R|® >=0 (32b)
ot ot

The direct product of these two reference vectors constitutes the

reference vector for the complete system
> = > > . (
|oy> = In;>[o (33)
The unitary mapping operator is then defined by
-1 -1 "/h 1 R/h 3 ' /h
1qRP/h 1qrp /. 1pRR/ 1prr /

U(pR,qR,pr,qr) =e e e e , (34)

where PrrdpsPy and 9, are label variables, and the unit vector

given by
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'|¢[pR(t),qR(t),pr(t),qr(t)]> = U[pR(t),qR(t),pr(t),qr(t)l|¢O>

~1q(0)P/h ~iq (6)p'/h ipp(IR/h ip (£)r'/h

= e e e e | |ni>!¢ot>
~1q(O)B/h  ip (£)R/h ~1q_(OP'/h ip_(£)r'/h
= e e d > e e |n, >
ot 1
= |o [pp(0),qp(e)]> |2 [p (£),q (0)]> (35)

where

-iq (t);/h ip (t)R/h
e R e R o > v (36a)

|9, [Pg(t)sa (01> ot

and

~1q_(£)p'/h ip_(E)r'/h
|¢V[Pr(t),qr(t)]> Ze e T Iﬂi> (36b)

If at t=0 one has
|#0px(0),q5(0),p (0),q (0)]> = [, [pp(0),qp(0)> |n.>, (37)
then, from Eq. (35) and Eq. (36), it is clear that
pr(O) =0 and qr(O) =0 . (38)
or

[® (p,(0),q.(0)]> = |¢ [0,0]> = |n > (39)



and

Accor

where

and
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—iqR(O);/h ip, (O)R/h

|0, [pR(0),ap(0)]> = e e o> - o)

ding to Eq. (18), with help of Eq. (35), it follows that

A A A A A

H(Pp,P »9p:9,) = <®[pp.P »95,a 1|H(B,R,p, 1) |[2[py,p sap.q 1>
<®(pg»>p_»dp>q, ] [H'(,R,p',r") [®lppsp »qp59, 1>
_ A' A ~ A" A'
= <0 |H' (P+py,Rebqp,p"+P ,r'+q ) [0 >
2 -2
pg P _ -
= An + 5 +vv(qr,r) + V(qR,qr,r) + 0P (41)
(31)? 5’
OP - <niI 2m |n >+ <¢ot Eﬁl ot
13_2 =2 A2 :
= < | = — — = .
n IZmI n, > >m T <®otl2 | ®°t> const,, (42)
v(qr,r) N <ni]v(r+qr)|ni> (43a)

-— - =< A /\+ N .
V(qr,r,qR) @otni|V(R+qR,r qr)|®otni (43b)
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Similarly one has

Hy(PpoPysdgrdy) = <0lppsp »ap,a.1|By(P,R,p,0) [0lpgop sagsa, 1>
=2
pR2 (p_+P) _ _
Y + —= + v(qr,r) + Op . (44)

From the scattering t:heory6 it is well known that

|out>-= §|in>
o 1H0c2/h- -thZ/h 1Htl/h -iHOtl/h .
= Xim e : e e e |1n>
t_ +>—0 ) ’ v :
t% (45)

where |out> and Iin> are out-asymptote and in-asymptote, respectively,
and S is the scattering operator. Mathematically, as expressed in

Eq. (45), t

1 should tend to - and ty tends to +», But in practice

it is sufficient Fhat |tl| = Itlf] and t, = tye be large enough so

that one has

-iHt/h -1fi e /h
e [o> = e |iny for t < t. = -t

1 (46a)

15

and

-iﬁc/h —iﬁot/h
e o> ~ e |out> for ¢ > t, = tog . (46b)

With this understanding one can rewrite the Eq. (45) as
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N

out> = §|in> = () |in>
) iuoczf/h -ichf/h thlf/h -iHOtlf/h .
= e e e e in
1 (47)
= >
3y Ay Y1y Iim
with
-i(-H) |t . |/h
0’ ' 1f
Q = ,
(1) e (48a)
-iH(t +le, D/
2 1-1f
Q = 4
(2) - ¢ , | (48b)
-i(-H)¢t, /h
0’/ "2f
Q = " N 8
(3) e (48¢)

This form suggests that the out-asymptote |out> is obtained from the in-
asymptote by following its evolution during 3 separate time periods:
in period 1 from t=0 to t=tlf the evolution of state is generated

by the Hamiltonian ﬁ or (-ﬁo) generates the evolution from t=0

0

to t=|t in period (2) the state is evolved from tif to toe

1f|§

according to Hamiltonian H; and finally in period (3) the state is

evolved from t=t back to t=0 by i

2f 0° ,
If one now identifies |in> = |ni> |®ot[pR(0);qR(0)]>, then by virtue

of our approximation Eq. (22) one has
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out> = |®[p_(t.),p (te),qp(ty),q (£.)]>

= 0, (p(tp),a () ]>[0 [pp(te),ap(ty)]>

-iqR(tf)}’;/h —iqr(tf)g'/h ipR(cf)ﬁ/h ipr(tf);"/h

= e e e € Ini>|®0t>

(49)

where pR(tf)’ qR(tf), pr(tf) and qr(tf) are correspondingly determined
by classical trajectory calculation as follows: one first integrates
the equations of motion Eq. (50) corresponding to HO(pR’pr’qR’qr) from
t=0 to t=t

1f

dqR(t) PR(C)

dt =_ H | ' (50a)
dqgic) _ pﬁ:E (5009
fz%éil =0 o (50¢)

with initial conditions

9=4g(0) 5 Pp7PR(0), q,=0, p =0 at t=0 (51)
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then continuously integrates Eq. (52) corresponding to H(pR,pr,qR,qr)

from t=t1f to t=t2f

dqR(t) pr(t)

T (52a)
dq_(t) p_+P

tr _'r

dt —_ m . (52b)
dP_(r) -V(r,q_,q,)

R = 5 r 'R (52¢)

dt dp .
dPr(t) =—BV(qr,r) ) BV(qr,r,qR) (524)

dt aqr ' qu

and finally integrates Eq. (50) from t=té back to t=0.
The projection of }out>’on the final state IntPf> then can be

readily calculated
£ _ f
<an lout> = <nfl®v[pr(tf),qr(tf)]><P |¢t[PR(tf),qR(tf)]> , (53)
where

<@, (py(t,) ap(tp) 1>

-iq (t.)P/h ip_(t_)R/h
< fle R'°f e R l(b N
P ot

2
- ‘/_ —=—— expl- = q.(t.) P0 - == (P -p_(t))"]
: (ﬂ)l/a hORTE ? §

(54)
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and

<ngf e [p (£ ,q.(tp)]>

-iq_(tp)p'/h ip (e )T'/h

<nf|e _ e |ni>

iqr(tf)p/h —ipr(tf)r/h -iqr(tf)p/h ipr(tf)r/h
<nf e e e e ni>

ipr(tf)[r-qr(tf)]/h

iq_(t)p/h —ipr(tf);/h.:;ﬂ
e e

00

dr <ﬁf|r> e

<r=- > .

r qr(tf)|ni (55)

Here Inf> and |Pf> are final vibrational state and translational momentum
eigenstate, respectively.

On the other hand, one has

<n Pf|out> <n Pflg‘in>

f f

= <n2’|§[n >|0, (p,(0),q,(0)]>

iy R £13
_fZNh <nP [S|niP><P|¢t(PR(0,),qR(O)]>

x 2m f£oT
VPP <P|¢ [pg(0),qp(0) 1>

P i,
=VI~T;<P |0, [pg(0),ap (1> S (B)
P f i



-21-

or
. [i <ntPf|out>
S LB AT —3 (56)
n .
Bg B p <P |2 [pp(0),q,(0)]>
with
i Gy £ . TRy
p = ZU(EO-Eni) , P = Zu(Eo—eni) o (57)
and

. . 2
<pi|¢t[pR(0),qR(0)] = J;g? ;%/—4 exp[(~ & qR(O)pl)— if (.Pl-pR(O))Zl

(58)

Here en is the vibratiomal energy of molecule BC in the state n and E0
is the total energy of the whole system. Eq. (56) is exact. Now if an
approximation Eq. (53) is used, then by virtue of Eq. (54) and Eq. (55) it

is obtained that

¢ ,
. i <p o [py(t),q,(E)]>
S, «n (B =‘/P—f i £ R R <nfl®v[pr(tf),qr(tf)]>
£ P <p |0.[pp(0),qp(0)]>

2

T -ifhy () Lmz Bleg) = ip, (t,) [r-q_(t)1/h
= B? e e /dr <nf|r>e r r £
P

=00

<r-qr(tf)|ni> s (59)
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where
y(ep) = qR(tf)Pf - qR(O)Pi + pr(.t'fﬁ - q.(t.)p (60a)

B(t

o = pfppe 1= lppon® (60b)

Thus, the transition probability can be calculated,
2
| - S5 B(tp)
' 2 P h
P = 1S, n (B)|® == e
i f i P

e

y ip _(t)[r-q (£ )1/h
r £ r f . 2
dr - < r>e . - -
l / nfl € <r qr(tf)lni>|

-0

X

(61)

where pR(tf), qR(tf)" p'r(tf) and qr(tf) are determined by calculating

one classical trajectory.
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IV. Example: The Vibrationélly Inelastic Scattering of Collinear

4 .

He H2_
To test the potential usefulness of this new approach a

calculation for the Secrest-Johnson model7 of collinear He + H2

vibrationally inelastic scattering has been carried out. In the

usual dimensionless coordinate system the Hamiltonian reads

A(P,R,p,) = % + B4 I+ exp(a(z-R) T (62)

with

H =-§-anda =0.3.

' In this case the vibration states |n> are the eigenstates of

harmonic oscillator, so that

< 5 > = D =
nilplni p=0 (63)
< tln>=17¢ =
ni|r|ni r=20 (64)
Also, the '"classical' Hamiltonians have the form:
o 2 > 2 q 2
_ R r r
HO 5 + 5 + = + 0p + 0V (65)
with
52 ;2
= <n. |+ > + < — > =
Op niIZ lni ®0t|2 | ot const. (66)
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and
0 = <n |£—|n > = const. (67)
v it2 ' ’
and
H=Hj +Aexpa (qr-qR) (68)
with
A = <n;|ear|n,><® ]e-aRI¢ > = const. . (69)
i i ot ot

It immediately follows that the equations of motion for label

variables are:

for H

dg P Y9
dt g’ dt Pr ?
dp dp
R - ——r = -
® -0 0 E& T Y o (70)

and for H
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d
g _Pr o %9
dt u 7 dt Pr
dpR :
49 - A o expa (qr—qR)
dpr .
£ - "9, - Ao expa(q.-qp) . (71)

In this example the matrix element Eq. (55) has a simple analytic

expression. In order to see this let us first make the following

transformations:
azs (¢r+ip)/VZ , af = (r-ip)/V2 (72)
~ ' . - ) -1 P (B)
Z(t) = (q (t) + ip(t))/¥2 , and 8(t) = tan qr(t) . (73)

It then follows that (for the details, see the Appendix)

-iq (ep  ip (eQ)T
|e e |n,>

<n i

f

1 2 . 1 2
- lilz(tf)l sin26(t ) e- Elz(tf)|

= e

A

A'f‘ . *
Iea Z(Cf) e-Z (Cf)aln

X

<nf

. L |2(e )]
-1 Zlz(tp) | “sin20(ty) - —5—— i(ngn)6(ty)

= e e €

n ' nf-ni+2k
i Vo Tn_T|z(t.)|
C T (ki 2
k!(ni—k)!(nf-ni+k)! ’

(74)
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* VA
where z (tf) = [qr(tf)-pr(tf)]//f- and |z| = ¥z°z . By virtue of

Eq. (74), the transition probability Eq. (61) becomes

i 2
Fageny T z_f expl- 57 ((F-pp(ee)” = (lopp(0)) Nexp|-[2(e ) |)
ni vo,! n,! -0 42
K i f nf n,+2k 2
X I =ZO (-l) k!(ni-k)!(nf—ni+k)! lz(tf)l 1 I s

(75)

) € >-=A'>=A :
If this theory gave |out S|in S]ni>%%t[pR(0),qR(0)]>

exactly, the transition amplitude S_ (E) obtained by using

(—n'
nf i

Eq. (56) would be independent of the choice qf»PR(O) and qR(O). Since
it is an approximation, though, the results of a calculation do depend
on the choice of pR(O), Since pR(O) is the average value of the
momentum ; in the initial wave packet state l¢f[pR(0),qR(O)]> with
initial énd final vibrational states |ni> and lnf> and total energy

E, specified, physical intuition suggests that the usual sehiclassical

0

choice of pR(O) should be reasonable

/—‘—‘_———— J Eni+€nf
pp(0) = V2u (E-€) =Y2m(Ey-—F5—)

(76)

The choice of qk(O) is more and less arbitrary, it only affects the
determination of tlf and t2fJL and so long as the conditions Eq. (46)
are satisfied, qR(O) can be any value. Furthermore, from Eq. (70)

and Eq. (71) one can see that the parameter & do not have any dynamic

effect on the pR(t) and |z(t)1, but the probability p_ __ does depend
£ i
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on £ as seen in Eq. (75). 1In order to eliminate this E dependence and to

symmetrilize the transition probability we choose £ such that

g2

el W et e n? - lp o1} |

rn

Then, the symmetrilized transition probability Pn n has the

£ i
simple expression 2
- 2 n, Vo, 'n_! , -
Pn «n, © IZ(tf)l | ji (_l)k k!(n —z;;zj-—n +k)! lz(tf),nf ni+2kl ’ ’
f i k=0 B S i | )

(77)

The results from Eq. (77) are given in Table I where for comparison
the exact quantum mechanical results of reference 7 are also included.

In Figure 1 we pictorially present the results for total energy

= 4,6, and 10 in unit of hw. For a given total energy EO and an initial

Eo
vibrational state n; only one ''classical" trajectory is needed to be
calculated to determine the transition probability to a final
vibrational state ne.

The comparison in Table 1 and Figure 1 shows that the present
approach describes the inelastic scattering process encouragingly

well. One obtains reasonably good results over a wide range of

energies for a great variety of An transitions.
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V. Discussion

ihe principal idea of the present semiclassical approach has been to
use classical mechanics in a formal sense to determine the time evolution
of the state vector. In the present application one recognizes many
similarities to time-~dependent wave packet methdds, but there are
significant differences.

The wave packet mgthodszware“essentially*aﬁcombinétiohiofitime-
dependent Hartree-Fock theory and Ehrenfest's tﬁeorem; and an
important aspect of them are the classical parameters, i,e., the
coordinates and momenta of the particles. The actual equations of
_ motion that characterize the wave packet, however, are non-classical.
In contrast, the present approach stems from the restricted variation
of the action functional,  This leads to a set of classical Hamilton!s:
‘equétions of motion-fofithe‘label variables,.which may or may not have
‘a direct physical.iﬂterpretatioﬁ;-thé effective Hamiltonian,‘however; |
is not necessarily identical to . the classical Hamiltonian,

Also, as seen with the example treated above, the present approach
deals equally well with translational wavefunctions (as a gaussian
wave packet) and with stationary states. Thus one cén easily use
initially excited vibrational staﬁes. whereas the usual wave packet
methods must represent e#cited states as linear combinations of gaussians.
It is also clear that the present approach can deal equally well with
quantum systems that have no classical analog, e.g., spin systems.
It appears also that it will be easier to deal with rotational
degrees of freedom, so that the present method may.be more easily
generalized to deal with three-dimensional collision systems than

wave packet approaches.
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Finally, the present approach has encouraging practical features; e.g.,
only one classical trajectory is necessary to generate the probability for a
given transition. In any event, however, the method is an approxi-
‘mation, the accuracy of which will depend on the nature of the system
investigated ;nd the choice of the reference vector, It is sufficiently
promising, though, that its generalization to 3-~d systems and also to

polyatomic dynamics seems worthwhile.
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AEEendix

~ ~

Let P and Q be a pair of self-adjoint operators which satisfy the

canonical commutation relation
(Q,P] = ih . (A.1)
Introduce a unitary operator
N "N
-iqP/h ein/h

a[p,q] Ze (A.2)

where p and q are the parameters, Now let us do the following

transformations:
Az Q+1HWE , &t = (up//E , (A.3)
z=(q+ 1ip)/Y2h and 6 = tan-l'% (A.4)

~ ~t e s
Here the a and a are well known annihilation and creation operators.

Then it follows that

1(~qP+pQ) /b = a'z-2"a | (A.5)

(5,8M =1 : (A.6)

~k z

a |n> = z;%ﬂjT-In-k> , (A.7)
~F n

o> = L3 |o> , (A.8)
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and

. * *
q = -123 (z+2”) (z~2™)

(22-2*2

%? ) = -h [z]z sin26 , g (A.9)

- where n 1is the eigenstate of harmonic oscillator. Using Eq. (A,5)

and Eq. (A.9) gives

ln,>

-iqP/h  iPQ/h
e i

A<nf[e

>

= o-ipa/ 2f1<nf | o~1aP/h+1pQ/h ln,

2
-1 15%- sin26 .t *n
e <

a z«z a
e |

= - <ng 1
2 12 |
IPRNE1 PP 1 At e * Kk
= e 2 e 2 <n Iea Z Z (—Z ) ak’n >
' £ k! i
k=0
(A.10)
With help of Eq. (A.7) and (A.8) one has
e & ek
az -z ~
<n Ie 2: N a In >
f %=0 k! i
- n ST
a k *xk i’
<agle Zi) D° 2 g e
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ny k, *k ni! ' | ~t Bk 2+z|
= ¢ (D) oot mel(@) 0>
x=0 k.(ni k) ! b3
l IZ
R S 1 >
= 3 CDE) G T Ve aoT et *i|z>e
=0 i £
;f ( )k ) *)k Vni!nf! nf—ni+k
= -1 z z
1(n -k)!(n.- !
=0 k.(ni k)!(ng ni+k).
n Ja ‘ol - (-
_ i (-1)k n, !n.! IZInf ni+2k e1(nf ni)e
T(n.-k)! (0.~ 1 ’
=0 k.(ni k).(nf ni+k).
(A.11)
Lz
_ 1z
atz 2 8
where |z> = e |0> e is well known to be a coherent state

which is the eigenstate of the operator a such that

2|z> = z|z>

and
<n|z> = e

Substituting Eq. (A.11) into Eq. (A.10) yields

<nf|e-qu/h ein/hlni>

2 2
—il%l— sin26 -1 (nf-ni)e - lEL— n

2 i K
= e e e 2: (-1)
k=0

nf—ni+2k
|2

(A.12)

(A.13)

vn,!n_ !
i f

1 Y1 — 1
k.(ni k).(nf ni+k).

(A.14)
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Figure Captions
1. Transition probability for collinear He + H2 vibrationally inelastic

scattering.
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